metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexakis(1*H*-imidazole- κN^3)nickel(II) bis(2,4-dibromo-6-formylphenolate) N,N-dimethylformamide disolvate

Yu Ding* and Chunlian Li

Department of Chemistry, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China Correspondence e-mail: dy9802@126.com

Received 15 April 2008; accepted 23 June 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.113; data-to-parameter ratio = 17.9.

In the cation of the title compound, $[Ni(C_3H_4N_2)_6](C_7H_3 Br_2O_2)_2 \cdot 2C_3H_7NO$, the Ni^{II} ion lies on an inversion center and is coordinated in a slightly distorted octahedral environment by six N atoms from six imidazole ligands. In the crystal structure, cations, anions and solvent molecules are linked by intermolecular N-H···O hydrogen bonds into one-dimensional chains along [010]. In addition, the crystal structure is stabilized by weak $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds.

Related literature

For related literature, see: Gelman et al. (2002).

Experimental

Crystal data

[Ni(C3H4N2)6](C7H3Br2O2)2--2C₃H₇NO $M_r = 1171.22$ Monoclinic, $P2_1/c$ a = 14.7271 (13) Åb = 9.0221 (8) Å c = 18.1143 (16) Å

```
\beta = 100.408 \ (2)^{\circ}
V = 2367.2 (4) Å<sup>3</sup>
Z = 2
Mo K\alpha radiation
\mu = 3.84 \text{ mm}^{-1}
T = 292 (2) K
0.25\,\times\,0.20\,\times\,0.20 mm
```

Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2001)
  T_{\rm min} = 0.308, \ T_{\rm max} = 0.392
  (expected range = 0.365 - 0.464)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	288 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
5147 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

13477 measured reflections

 $R_{\rm int} = 0.031$

5147 independent reflections

3646 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ni1-N5	2.121 (2)	Ni1-N1	2.138 (2)
N11-N3	2.128 (2)		
N5-Ni1-N5 ⁱ	180	N3-Ni1-N1 ⁱ	91.48 (9)
N5-Ni1-N3 ⁱ	91.41 (9)	N5-Ni1-N1	90.14 (9)
N5-Ni1-N3	88.59 (9)	N3-Ni1-N1	88.52 (9)
N3 ⁱ -Ni1-N3	180	N1 ⁱ -Ni1-N1	180
N5-Ni1-N1 ⁱ	89.86 (9)		

Symmetry code: (i) -x + 1, -y, -z.

Table 2		
Hvdrogen-bond geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O3^{ii}$	0.86	1.92	2.764 (5)	169
$N4-H4A\cdots O2^{iii}$	0.86	1.85	2.703 (3)	170
$N6-H6A\cdots O2^{iv}$	0.86	1.97	2.772 (3)	155
$C7 - H7 \cdot \cdot \cdot N1^{i}$	0.93	2.57	3.076 (4)	115
$C8-H8O1^{v}$	0.93	2.59	3.264 (5)	130
C3−H3···N3	0.93	2.57	3.053 (4)	113

Symmetry codes: (i) -x + 1, -y, -z; (ii) $-x + -x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$. Symmetry $-x+1, y-\frac{1}{2}, -z+\frac{1}{2};$ (iii)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Hubei Province (No. O20082601) and the Foundation of Xiaogan University (Z2008012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2618).

References

- Bruker (2001). SAINT, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Gelman, D., Dechert, S., Schumann, H. & Blum, J. (2002). Inorg. Chim. Acta, 334, 149-158.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, m968 [doi:10.1107/S1600536808018989]

Hexakis(1*H*-imidazole- κN^3)nickel(II) bis(2,4-dibromo-6-formylphenolate) *N*,*N*-dimethylformamide disolvate

Y. Ding and C. Li

Comment

Due to the weak coordination strength of dibromosalicylaldehydenate anions with transition metals, the dibromosalicylaldehydenate usually acts as the counterbalance of the charge. Herein, we report the crystal structure of such a compound, $[Ni(Im)_6](DBSH)_2 2DMF$, (I), (Im = imidazole; H₂DBSH =3,5-dibromosalicylaldehyde; DMF =*N*,*N*-dimethylformamide). The molecular structure of (I) is shown in Fig.1. The Ni^{II} ion lying on an inversion center has a distorted octahedral geometry being coordinated by six N atoms from six imidazole ligands. Atoms N3, N3ⁱ, N5 & N5ⁱ comprise the equatorial plane, whereas the other two N atoms (N1 & N1ⁱ) occupy the axial positions (symmetry code as is Table 1). The Ni—N distances (Table 1), and the average Ni—N bond length of 2.12 Å, are longer than the Ni—N distances in [Ni(nap)(bip)](Cl)(nap = 1-naphthyl; bip =2,2ⁱ-bipyridine-N,Nⁱ; Ni—N 1.919 (8) Å) (Gelman *et al.*, 2002). As shown in Fig.2, an organic cation layer is linked to an inorganic anionic layer through a series of N—H···O, C—H···O and C—H···N hydrogen bonds (Table 2), and adjacent 3,5-dibromosalicylaldehydenate anions are antiparallel. The hydrogen bonds stabilize the crystal structure.

Experimental

The title compound was prepared by adding Ni(Ac)₂ 2 H₂O (0.110 g, 0.5 mmol) to a solution of H₂(DBSH) 0.122 mg (0.5 mmol) in methanol (20 mL) and DMF (20 ml). After stirring the mixture for 2 h, the solution was filtered and kept for several days at ambient temperature to evaporate. Brown block-like crystals were obtained.

Refinement

All H atoms were placed in geometrically idealized positions and refined in the riding- model approximation, with N-H = 0.86 Å and C-H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C_{methyl})$

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level [symmetry code: (i) -x+1, -y, -z]. H atoms have been omitted.

Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.

Hexkis(1H-imidazole-κN³)nickel(II) bis(2,4-dibromo-6-formylphenolate) *N*,*N*-dimethylformamide disolvate

Crystal data

 $[Ni(C_3H_4N_2)_6](C_7H_3Br_2O_2)_2 \cdot 2C_3H_7NO$ $F_{000} = 1172$ $M_r = 1171.22$ $D_{\rm x} = 1.643 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/c$ $\lambda = 0.71073 \text{ \AA}$ Hall symbol: -P 2ybc Cell parameters from 3743 reflections $\theta = 2.3 - 25.2^{\circ}$ *a* = 14.7271 (13) Å *b* = 9.0221 (8) Å $\mu = 3.84 \text{ mm}^{-1}$ c = 18.1143 (16) ÅT = 292 (2) K $\beta = 100.408 \ (2)^{\circ}$ Block, brown V = 2367.2 (4) Å³ $0.25\times0.20\times0.20~mm$ Z = 2

Data collection

Bruker SMART CCD diffractometer	5147 independent reflections
Radiation source: fine-focus sealed tube	3646 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 292(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -18 \rightarrow 10$
$T_{\min} = 0.309, T_{\max} = 0.392$	$k = -11 \rightarrow 10$
13477 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0625P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
5147 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$

288 parameters

 $\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Ni1 0.5000 0.0000 0.0000 $0.03274 (14)$ Br1 $0.24272 (2)$ $0.17200 (5)$ $0.27116 (2)$ $0.06303 (15)$ Br2 $-0.11882 (4)$ $0.03677 (8)$ $0.12533 (3)$ $0.1107 (2)$ N1 $0.52342 (17)$ $-0.0719 (3)$ $0.11435 (13)$ $0.0402 (6)$ N2 $0.5794 (2)$ $-0.0782 (4)$ $0.23540 (15)$ $0.586 (8)$ H2A 0.6097 -0.0524 0.2786 $0.070*$ N3 $0.56038 (16)$ $0.2073 (3)$ $0.03727 (13)$ $0.0393 (6)$ N4 $0.6664 (2)$ $0.3744 (3)$ $0.07883 (15)$ $0.0524 (7)$ H4A 0.7192 0.4175 0.0890 $0.063*$ N5 $0.36975 (16)$ $0.0871 (3)$ $0.01215 (13)$ $0.0379 (6)$ N6 $0.25325 (17)$ $0.2412 (3)$ $-0.00608 (16)$ $0.0487 (7)$ H6A 0.2142 0.3053 -0.0279 $0.058*$ C16 $-0.0057 (2)$ $-0.0903 (4)$ $0.41722 (18)$ $0.0451 (8)$ H16 0.0403 -0.0923 0.4598 $0.054*$ N8 $0.2044 (3)$ $0.7094 (4)$ $0.1345 (2)$ $0.0482 (9)$ O1 $-0.6693 (3)$ $-0.1323 (4)$ $0.1358 (18)$ $0.0927 (10)$ C1 $0.4906 (2)$ $-0.1939 (4)$ $0.1457 (2)$ $0.054*$ O3 $0.3141 (2)$ $0.5358 (4)$ $0.1585 (18)$ $0.0927 (10)$ C1 $0.4906 (2)$ $-0.1939 (4)$ $0.1457 (2)$ $0.064*$ O3 $0.5773 (2)$ $-0.0056 (4)$ $0.17004 (18)$ 0.0		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1 $0.24272 (2)$ $0.17200 (5)$ $0.27116 (2)$ $0.06303 (15)$ Br2 $-0.11882 (4)$ $0.03677 (8)$ $0.12533 (3)$ $0.1107 (2)$ N1 $0.52342 (17)$ $-0.0719 (3)$ $0.11435 (13)$ $0.0402 (6)$ N2 $0.5794 (2)$ $-0.0782 (4)$ $0.23540 (15)$ $0.586 (8)$ H2A 0.6097 -0.0524 0.2786 $0.070*$ N3 $0.56038 (16)$ $0.2073 (3)$ $0.03727 (13)$ $0.0393 (6)$ N4 $0.6664 (2)$ $0.3744 (3)$ $0.0783 (15)$ $0.0524 (7)$ H4A 0.7192 0.4175 0.0890 $0.063*$ N5 $0.36975 (16)$ $0.0871 (3)$ $0.01215 (13)$ $0.0379 (6)$ N6 $0.25325 (17)$ $0.2412 (3)$ $-0.00608 (16)$ $0.0487 (7)$ H6A 0.2142 0.3053 -0.0279 $0.58*$ C16 $-0.0057 (2)$ $-0.0903 (4)$ $0.41722 (18)$ $0.0451 (8)$ H16 0.0403 -0.0923 0.4598 $0.054*$ N8 $0.2044 (3)$ $0.7094 (4)$ $0.1345 (2)$ $0.0457 (5)$ O3 $0.3141 (2)$ $0.5358 (4)$ $0.13585 (18)$ $0.0927 (10)$ C1 $0.4906 (2)$ $-0.1339 (4)$ $0.1457 (2)$ $0.054*$ O3 $0.3141 (2)$ $0.5358 (4)$ $0.1557 (2)$ $0.064* (10)$ C2 $0.5247 (3)$ $-0.1991 (5)$ $0.2203 (2)$ $0.064* (10)$ H2 0.5130 -0.2710 0.2542 $0.078*$ C3 $0.5773 (2)$ $-0.0056 (4)$ $0.17004 (18)$ $0.498 (8$	Ni1	0.5000	0.0000	0.0000	0.03274 (14)
Br2 -0.11882 (4) 0.03677 (8) 0.12533 (3) 0.1107 (2) N1 0.52342 (17) -0.0719 (3) 0.11435 (13) 0.0402 (6) N2 0.5794 (2) -0.0782 (4) 0.23540 (15) 0.0586 (8) H2A 0.6097 -0.0524 0.2786 0.070* N3 0.56038 (16) 0.2073 (3) 0.03727 (13) 0.0393 (6) N4 0.6664 (2) 0.3744 (3) 0.07883 (15) 0.0524 (7) H4A 0.7192 0.4175 0.0890 0.063* N5 0.36975 (16) 0.0871 (3) 0.01215 (13) 0.0379 (6) N6 0.25325 (17) 0.2412 (3) -0.06068 (16) 0.0487 (7) H6A 0.2142 0.3053 -0.0279 0.058* C16 -0.0057 (2) -0.0903 (4) 0.41722 (18) 0.0441 (8) H16 0.0403 -0.0923 0.4598 0.054* N8 0.2044 (3) 0.7094 (4) 0.1345 (2) 0.0744 (9) O1 -0.0693 (3) -0.1323 (4) 0.4217	Br1	0.24272 (2)	0.17200 (5)	0.27116 (2)	0.06303 (15)
N1 0.52342 (17) -0.0719 (3) 0.11435 (13) 0.0402 (6) N2 0.5794 (2) -0.0782 (4) 0.23540 (15) 0.0586 (8) H2A 0.6097 -0.0524 0.2786 0.070* N3 0.56038 (16) 0.2073 (3) 0.03727 (13) 0.0393 (6) N4 0.6664 (2) 0.3744 (3) 0.07883 (15) 0.0524 (7) H4A 0.7192 0.4175 0.0890 0.063* N5 0.36975 (16) 0.0871 (3) 0.01215 (13) 0.0379 (6) N6 0.25325 (17) 0.2412 (3) -0.0608 (16) 0.0487 (7) H6A 0.2142 0.3053 -0.0279 0.058* C16 -0.0057 (2) -0.0903 (4) 0.41722 (18) 0.0451 (8) H16 0.0403 -0.0273 0.4598 0.054* N8 0.2044 (3) 0.7094 (4) 0.1345 (2) 0.0744 (9) O1 -0.0693 (3) -0.1323 (4) 0.42179 (16) 0.882 (9) O2 0.17355 (14) 0.0277 (2) 0.40408 (Br2	-0.11882 (4)	0.03677 (8)	0.12533 (3)	0.1107 (2)
N20.5794 (2)-0.0782 (4)0.23540 (15)0.0586 (8)H2A0.6097-0.05240.27860.070*N30.56038 (16)0.2073 (3)0.03727 (13)0.0393 (6)N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)H4A0.71920.41750.08900.063*N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13555 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.545 (9)H10.4506-0.26350.11950.665*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.056 (4)0.17004 (18)0.498 (8)H30.61000.8090.16510.606*C50.5854 (3)0.4248 (4)0.0949 (2)0.6069 (10)H50.57610.51290.11920.073*	N1	0.52342 (17)	-0.0719 (3)	0.11435 (13)	0.0402 (6)
H2A0.6097-0.05240.27860.070*N30.56038 (16)0.2073 (3)0.03727 (13)0.0393 (6)N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)H4A0.71920.41750.08900.063*N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.06088 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.5454 (9)H10.4506-0.26350.11950.66*C20.5247 (3)-0.1991 (5)0.2203 (2)0.647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.8090.16510.606*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.56*C50.5854 (3)0.4248 (4)0.0949 (2)0.6069 (10)H	N2	0.5794 (2)	-0.0782 (4)	0.23540 (15)	0.0586 (8)
N30.56038 (16)0.2073 (3)0.03727 (13)0.0393 (6)N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)H4A0.71920.41750.08900.063*N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.6693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.9949 (2)0.0609 (10)H50.57610.51290.11920.073*	H2A	0.6097	-0.0524	0.2786	0.070*
N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)H4A0.71920.41750.08900.063*N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13555 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H	N3	0.56038 (16)	0.2073 (3)	0.03727 (13)	0.0393 (6)
H4A0.71920.41750.08900.063*N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.498 (8)H30.61000.8090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.517 (8)H60.45860.32850.07190.052*	N4	0.6664 (2)	0.3744 (3)	0.07883 (15)	0.0524 (7)
N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	H4A	0.7192	0.4175	0.0890	0.063*
N60.25325 (17)0.2412 (3)-0.00608 (16)0.0487 (7)H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.066*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	N5	0.36975 (16)	0.0871 (3)	0.01215 (13)	0.0379 (6)
H6A0.21420.3053-0.02790.058*C16-0.0057 (2)-0.0903 (4)0.41722 (18)0.0451 (8)H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.0647 (10)H20.5130-0.27100.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.066*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	N6	0.25325 (17)	0.2412 (3)	-0.00608 (16)	0.0487 (7)
C16 $-0.0057 (2)$ $-0.0903 (4)$ $0.41722 (18)$ $0.0451 (8)$ H16 0.0403 -0.0923 0.4598 $0.054*$ N8 $0.2044 (3)$ $0.7094 (4)$ $0.1345 (2)$ $0.0744 (9)$ O1 $-0.0693 (3)$ $-0.1323 (4)$ $0.42179 (16)$ $0.0882 (9)$ O2 $0.17355 (14)$ $0.0277 (2)$ $0.40408 (11)$ $0.0457 (5)$ O3 $0.3141 (2)$ $0.5358 (4)$ $0.13585 (18)$ $0.0927 (10)$ C1 $0.4906 (2)$ $-0.1939 (4)$ $0.1457 (2)$ $0.0545 (9)$ H1 0.4506 -0.2635 0.1195 $0.065*$ C2 $0.5247 (3)$ $-0.1991 (5)$ $0.2203 (2)$ $0.0647 (10)$ H2 0.5130 -0.2710 0.2542 $0.078*$ C3 0.6100 0.0809 0.1651 $0.0408 (8)$ H3 0.6100 $0.2437 (4)$ $0.04387 (17)$ $0.0465 (8)$ H4 0.6916 0.1858 0.0264 $0.056*$ C5 $0.5854 (3)$ $0.4248 (4)$ $0.0949 (2)$ $0.0609 (10)$ H5 0.5761 0.5129 0.1192 $0.073*$ C6 $0.5208 (2)$ $0.3220 (4)$ $0.06879 (19)$ $0.0517 (8)$ H6 0.4586 0.3285 0.0719 $0.062*$	H6A	0.2142	0.3053	-0.0279	0.058*
H160.0403-0.09230.45980.054*N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.517 (8)H60.45860.32850.07190.062*	C16	-0.0057 (2)	-0.0903 (4)	0.41722 (18)	0.0451 (8)
N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.066*C40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	H16	0.0403	-0.0923	0.4598	0.054*
O1-0.0693 (3)-0.1323 (4)0.42179 (16)0.0882 (9)O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.066*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	N8	0.2044 (3)	0.7094 (4)	0.1345 (2)	0.0744 (9)
O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	01	-0.0693 (3)	-0.1323 (4)	0.42179 (16)	0.0882 (9)
O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	02	0.17355 (14)	0.0277 (2)	0.40408 (11)	0.0457 (5)
C10.4906 (2)-0.1939 (4)0.1457 (2)0.0545 (9)H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	O3	0.3141 (2)	0.5358 (4)	0.13585 (18)	0.0927 (10)
H10.4506-0.26350.11950.065*C20.5247 (3)-0.1991 (5)0.2203 (2)0.0647 (10)H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	C1	0.4906 (2)	-0.1939 (4)	0.1457 (2)	0.0545 (9)
C2 $0.5247 (3)$ $-0.1991 (5)$ $0.2203 (2)$ $0.0647 (10)$ H2 0.5130 -0.2710 0.2542 $0.078*$ C3 $0.5773 (2)$ $-0.0056 (4)$ $0.17004 (18)$ $0.0498 (8)$ H3 0.6100 0.0809 0.1651 $0.060*$ C4 $0.6477 (2)$ $0.2437 (4)$ $0.04387 (17)$ $0.0465 (8)$ H4 0.6916 0.1858 0.0264 $0.056*$ C5 $0.5854 (3)$ $0.4248 (4)$ $0.0949 (2)$ $0.0609 (10)$ H5 0.5761 0.5129 0.1192 $0.073*$ C6 $0.5208 (2)$ $0.3220 (4)$ $0.06879 (19)$ $0.0517 (8)$ H6 0.4586 0.3285 0.0719 $0.062*$	H1	0.4506	-0.2635	0.1195	0.065*
H20.5130-0.27100.25420.078*C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	C2	0.5247 (3)	-0.1991 (5)	0.2203 (2)	0.0647 (10)
C30.5773 (2)-0.0056 (4)0.17004 (18)0.0498 (8)H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	H2	0.5130	-0.2710	0.2542	0.078*
H30.61000.08090.16510.060*C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	C3	0.5773 (2)	-0.0056 (4)	0.17004 (18)	0.0498 (8)
C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	H3	0.6100	0.0809	0.1651	0.060*
H40.69160.18580.02640.056*C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	C4	0.6477 (2)	0.2437 (4)	0.04387 (17)	0.0465 (8)
C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	H4	0.6916	0.1858	0.0264	0.056*
H50.57610.51290.11920.073*C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	C5	0.5854 (3)	0.4248 (4)	0.0949 (2)	0.0609 (10)
C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)H60.45860.32850.07190.062*	Н5	0.5761	0.5129	0.1192	0.073*
H6 0.4586 0.3285 0.0719 0.062*	C6	0.5208 (2)	0.3220 (4)	0.06879 (19)	0.0517 (8)
	H6	0.4586	0.3285	0.0719	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.3228 (2)	0.1833 (3)	-0.03379 (18)	0.0434 (7)
H7	0.3367	0.2082	-0.0803	0.052*
C8	0.2548 (2)	0.1816 (4)	0.0622 (2)	0.0590 (9)
H8	0.2149	0.2021	0.0952	0.071*
C9	0.3262 (2)	0.0860 (4)	0.07290 (19)	0.0522 (8)
Н9	0.3435	0.0277	0.1154	0.063*
C10	0.1241 (2)	0.0919 (4)	0.27542 (18)	0.0461 (7)
C11	0.1103 (2)	0.0322 (3)	0.34538 (18)	0.0400 (7)
C12	0.0195 (2)	-0.0232 (3)	0.34397 (18)	0.0455 (8)
C13	-0.0480 (2)	-0.0201 (4)	0.2791 (2)	0.0546 (9)
H13	-0.1067	-0.0573	0.2801	0.066*
C14	-0.0282 (3)	0.0373 (4)	0.2142 (2)	0.0584 (9)
C15	0.0579 (2)	0.0958 (4)	0.21212 (18)	0.0565 (9)
H15	0.0707	0.1374	0.1681	0.068*
C19	0.2451 (3)	0.6031 (5)	0.1056 (2)	0.0727 (11)
H19	0.2195	0.5749	0.0569	0.087*
C17	0.2366 (4)	0.7550 (7)	0.2115 (3)	0.1150 (19)
H17A	0.1915	0.7283	0.2414	0.173*
H17B	0.2455	0.8604	0.2134	0.173*
H17C	0.2940	0.7065	0.2308	0.173*
C18	0.1235 (4)	0.7834 (6)	0.0939 (3)	0.1070 (17)
H18A	0.1126	0.7516	0.0425	0.161*
H18B	0.1332	0.8886	0.0961	0.161*
H18C	0.0710	0.7590	0.1162	0.161*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0284 (3)	0.0338 (3)	0.0357 (3)	0.0004 (2)	0.0047 (2)	-0.0001 (2)
Br1	0.0482 (2)	0.0825 (3)	0.0575 (2)	-0.01576 (18)	0.00701 (17)	0.00634 (18)
Br2	0.0836 (4)	0.1536 (5)	0.0743 (3)	-0.0336 (3)	-0.0404 (3)	0.0199 (3)
N1	0.0382 (14)	0.0433 (15)	0.0396 (14)	0.0043 (12)	0.0087 (11)	0.0020 (12)
N2	0.067 (2)	0.071 (2)	0.0378 (15)	0.0125 (17)	0.0083 (14)	0.0040 (15)
N3	0.0374 (14)	0.0380 (14)	0.0418 (14)	-0.0036 (11)	0.0047 (11)	-0.0010 (11)
N4	0.0472 (17)	0.0496 (17)	0.0562 (17)	-0.0136 (13)	-0.0017 (13)	-0.0045 (14)
N5	0.0311 (13)	0.0386 (14)	0.0442 (14)	0.0012 (10)	0.0070 (11)	-0.0019 (11)
N6	0.0337 (14)	0.0465 (16)	0.0626 (17)	0.0100 (12)	0.0001 (12)	-0.0058 (14)
C16	0.0262 (15)	0.059 (2)	0.0451 (18)	-0.0011 (15)	-0.0081 (13)	-0.0160 (16)
N8	0.088 (3)	0.061 (2)	0.069 (2)	-0.0127 (19)	0.0011 (19)	-0.0037 (18)
01	0.111 (3)	0.091 (2)	0.0664 (18)	-0.015 (2)	0.0265 (18)	0.0002 (16)
O2	0.0361 (12)	0.0528 (14)	0.0436 (12)	0.0005 (9)	-0.0051 (10)	-0.0011 (10)
O3	0.099 (3)	0.093 (2)	0.079 (2)	0.002 (2)	-0.0024 (19)	0.0033 (18)
C1	0.050 (2)	0.056 (2)	0.058 (2)	0.0017 (16)	0.0107 (16)	0.0111 (17)
C2	0.070 (3)	0.075 (3)	0.053 (2)	0.004 (2)	0.0205 (19)	0.019 (2)
C3	0.054 (2)	0.055 (2)	0.0405 (17)	0.0034 (16)	0.0089 (15)	-0.0004 (16)
C4	0.0444 (19)	0.047 (2)	0.0474 (18)	-0.0039 (15)	0.0072 (14)	-0.0012 (16)
C5	0.061 (2)	0.042 (2)	0.077 (3)	-0.0013 (17)	0.005 (2)	-0.0146 (19)
C6	0.0444 (19)	0.0440 (19)	0.066 (2)	0.0017 (15)	0.0070 (16)	-0.0112 (16)

C7	0.0353 (16)	0.0476 (19)	0.0443 (17)	0.0019 (14)	-0.0006 (13)	-0.0022 (15)
C8	0.050 (2)	0.067 (2)	0.066 (2)	0.0175 (18)	0.0270 (18)	0.0084 (19)
C9	0.050 (2)	0.055 (2)	0.055 (2)	0.0130 (16)	0.0214 (16)	0.0123 (16)
C10	0.0384 (17)	0.0481 (19)	0.0507 (18)	-0.0033 (14)	0.0051 (14)	0.0018 (15)
C11	0.0319 (16)	0.0354 (17)	0.0498 (18)	0.0041 (12)	-0.0002 (13)	-0.0057 (13)
C12	0.0368 (17)	0.048 (2)	0.0504 (19)	0.0013 (14)	0.0029 (14)	-0.0005 (15)
C13	0.0382 (19)	0.057 (2)	0.064 (2)	-0.0085 (15)	-0.0036 (16)	-0.0035 (17)
C14	0.052 (2)	0.065 (2)	0.050(2)	-0.0074 (17)	-0.0156 (16)	0.0011 (17)
C15	0.059 (2)	0.061 (2)	0.0443 (18)	-0.0076 (18)	-0.0037 (16)	0.0047 (17)
C19	0.088 (3)	0.068 (3)	0.058 (2)	-0.020 (2)	0.004 (2)	0.002 (2)
C17	0.147 (5)	0.104 (4)	0.090 (4)	-0.009 (4)	0.010 (3)	-0.022 (3)
C18	0.108 (4)	0.073 (3)	0.126 (4)	0.000 (3)	-0.015 (3)	0.004 (3)

Geometric parameters (Å, °)

Ni1—N5	2.121 (2)	O2—C11	1.282 (4)
Ni1—N5 ⁱ	2.121 (2)	O3—C19	1.224 (5)
Ni1—N3 ⁱ	2.128 (2)	C1—C2	1.355 (5)
Ni1—N3	2.128 (2)	С1—Н1	0.9300
Ni1—N1 ⁱ	2.138 (2)	С2—Н2	0.9300
Ni1—N1	2.138 (2)	С3—Н3	0.9300
Br1-C10	1.905 (3)	C4—H4	0.9300
Br1—H8	3.1509	C5—C6	1.351 (5)
Br2—C14	1.896 (3)	С5—Н5	0.9300
N1—C3	1.309 (4)	С6—Н6	0.9300
N1—C1	1.366 (4)	С7—Н7	0.9300
N2—C3	1.348 (4)	C8—C9	1.346 (5)
N2—C2	1.354 (5)	С8—Н8	0.9300
N2—H2A	0.8600	С9—Н9	0.9300
N3—C4	1.312 (4)	C10—C15	1.365 (4)
N3—C6	1.362 (4)	C10—C11	1.425 (4)
N4—C4	1.343 (4)	C11—C12	1.424 (4)
N4—C5	1.357 (4)	C12—C13	1.396 (5)
N4—H4A	0.8600	C13—C14	1.364 (5)
N5—C7	1.310 (4)	С13—Н13	0.9300
N5—C9	1.370 (4)	C14—C15	1.381 (5)
N6—C7	1.327 (4)	C15—H15	0.9300
N6—C8	1.345 (4)	С19—Н19	0.9300
N6—H6A	0.8600	C17—H17A	0.9600
C16—O1	1.028 (4)	C17—H17B	0.9600
C16—C12	1.563 (5)	C17—H17C	0.9600
С16—Н16	0.9300	C18—H18A	0.9600
N8—C19	1.290 (6)	C18—H18B	0.9600
N8—C18	1.446 (6)	C18—H18C	0.9600
N8—C17	1.450 (6)		
N5—Ni1—N5 ⁱ	180	N3—C4—H4	124.0
N5—Ni1—N3 ⁱ	91.41 (9)	N4—C4—H4	124.0
N5 ⁱ —Ni1—N3 ⁱ	88.59 (9)	C6—C5—N4	106.5 (3)

N5—Ni1—N3	88.59 (9)	С6—С5—Н5	126.7
N5 ⁱ —Ni1—N3	91.41 (9)	N4—C5—H5	126.7
N3 ⁱ —Ni1—N3	180	C5—C6—N3	110.0 (3)
N5 Nj1 N1 ⁱ	89 86 (9)	С5—С6—Н6	125.0
	00.14(0)		125.0
N5'	90.14 (9)		123.0
N3'—Ni1—N1'	88.52 (9)	N5C7N6	112.0 (3)
$N3-Ni1-N1^{i}$	91.48 (9)	N5—C7—H7	124.0
N5—Ni1—N1	90.14 (9)	N6—C7—H7	124.0
N5 ⁱ —Ni1—N1	89.86 (9)	N6—C8—C9	105.8 (3)
N3 ⁱ —Ni1—N1	91.48 (9)	N6—C8—H8	127.1
N3—Ni1—N1	88.52 (9)	С9—С8—Н8	127.1
N1 ⁱ —Ni1—N1	180	C8—C9—N5	110.3 (3)
C10—Br1—H8	96.9	С8—С9—Н9	124.9
C3—N1—C1	105.0 (3)	N5—C9—H9	124.9
C3—N1—Ni1	125.3 (2)	C15-C10-C11	124.2 (3)
C1—N1—Ni1	129.8 (2)	C15-C10-Br1	118.5 (3)
C3—N2—C2	107.2 (3)	C11—C10—Br1	117.3 (2)
C3—N2—H2A	126.4	O2—C11—C12	122.9 (3)
C2—N2—H2A	126.4	O2—C11—C10	123.4 (3)
C4—N3—C6	105.0 (3)	C12—C11—C10	113.7 (3)
C4—N3—Ni1	126.5 (2)	C13—C12—C11	122.1 (3)
C6—N3—Ni1	127.9 (2)	C13—C12—C16	118.7 (3)
C4—N4—C5	106.5 (3)	C11—C12—C16	119.2 (3)
C4—N4—H4A	126.8	C14—C13—C12	120.2 (3)
C5—N4—H4A	126.8	C14—C13—H13	119.9
C7—N5—C9	104.2 (3)	C12—C13—H13	119.9
C7—N5—Ni1	124.2 (2)	C13—C14—C15	120.6 (3)
C9—N5—Ni1	130.1 (2)	C13—C14—Br2	120.2 (3)
C7—N6—C8	107.7 (3)	C15—C14—Br2	119.1 (3)
C7—N6—H6A	126.1	C10—C15—C14	119.2 (3)
C8—N6—H6A	126.1	C10—C15—H15	120.4
01	124.8 (3)	C14—C15—H15	120.4
O1—C16—H16	117.6	O3—C19—N8	126.5 (4)
C12—C16—H16	117.6	O3—C19—H19	116.7
C19—N8—C18	122.5 (4)	N8—C19—H19	116.7
C19—N8—C17	120.4 (4)	N8—C17—H17A	109.5
C18 - N8 - C17	11/.0 (4)		109.5
$C_2 = C_1 = N_1$	110.3 (3)	HI/A - CI/-HI/B	109.5
C2—CI—HI	124.8	N8—C1/—H1/C	109.5
N1 - C1 - H1	124.8	HI/A—CI/—HI/C	109.5
$N_2 = C_2 = C_1$	103.9 (3)	$\frac{11}{10} - \frac{11}{10} - \frac{11}{10} + 11$	109.5
C1 - C2 - H2	127.1	N8_C18_H18R	109.5
N1_C3_N2	111 7 (3)	H18AC18H18B	109.5
N1_C3_H3	174.2	N8—C18—H18C	109.5
N2-C3-H3	124.2	H18A - C18 - H18C	109.5
N3-C4-N4	112.1.(3)	H18B-C18-H18C	109.5
	(*)		

N5—Ni1—N1—C3	-102.9 (3)	C4—N4—C5—C6	-0.1 (4)
N5 ⁱ —Ni1—N1—C3	77.1 (3)	N4—C5—C6—N3	0.6 (4)
N3 ⁱ —Ni1—N1—C3	165.7 (3)	C4—N3—C6—C5	-0.9 (4)
N3—Ni1—N1—C3	-14.3 (3)	Ni1—N3—C6—C5	170.9 (2)
N5—Ni1—N1—C1	79.5 (3)	C9—N5—C7—N6	-0.4 (3)
N5 ⁱ —Ni1—N1—C1	-100.5 (3)	Ni1—N5—C7—N6	-167.72 (19)
N3 ⁱ —Ni1—N1—C1	-11.9 (3)	C8—N6—C7—N5	0.8 (4)
N3—Ni1—N1—C1	168.1 (3)	C7—N6—C8—C9	-0.9 (4)
N5—Ni1—N3—C4	-178.5 (3)	N6-C8-C9-N5	0.7 (4)
N5 ⁱ —Ni1—N3—C4	1.5 (3)	C7—N5—C9—C8	-0.2 (4)
N1 ⁱ —Ni1—N3—C4	-88.6 (3)	Ni1—N5—C9—C8	166.1 (2)
N1—Ni1—N3—C4	91.4 (3)	H8—Br1—C10—C15	-12.2
N5—Ni1—N3—C6	11.4 (3)	H8—Br1—C10—C11	168.2
N5 ⁱ —Ni1—N3—C6	-168.6 (3)	C15—C10—C11—O2	179.1 (3)
N1 ⁱ —Ni1—N3—C6	101.2 (3)	Br1-C10-C11-O2	-1.3 (4)
N1—Ni1—N3—C6	-78.8 (3)	C15-C10-C11-C12	-0.5 (5)
N3 ⁱ —Ni1—N5—C7	-105.8 (2)	Br1-C10-C11-C12	179.1 (2)
N3—Ni1—N5—C7	74.2 (2)	O2-C11-C12-C13	-178.7 (3)
N1 ⁱ —Ni1—N5—C7	-17.3 (2)	C10-C11-C12-C13	0.9 (4)
N1—Ni1—N5—C7	162.7 (2)	O2-C11-C12-C16	1.2 (4)
N3 ⁱ —Ni1—N5—C9	90.3 (3)	C10-C11-C12-C16	-179.3 (3)
N3—Ni1—N5—C9	-89.7 (3)	O1-C16-C12-C13	-0.6 (6)
N1 ⁱ —Ni1—N5—C9	178.8 (3)	O1-C16-C12-C11	179.6 (4)
N1—Ni1—N5—C9	-1.2 (3)	C11—C12—C13—C14	0.0 (5)
C3—N1—C1—C2	0.5 (4)	C16-C12-C13-C14	-179.8 (3)
Ni1—N1—C1—C2	178.4 (2)	C12-C13-C14-C15	-1.4 (6)
C3—N2—C2—C1	-0.6 (4)	C12-C13-C14-Br2	178.3 (3)
N1—C1—C2—N2	0.1 (4)	C11-C10-C15-C14	-0.8 (5)
C1—N1—C3—N2	-0.9 (4)	Br1-C10-C15-C14	179.6 (3)
Ni1—N1—C3—N2	-179.0 (2)	C13-C14-C15-C10	1.8 (6)
C2—N2—C3—N1	1.0 (4)	Br2-C14-C15-C10	-177.9 (3)
C6—N3—C4—N4	0.9 (4)	C18—N8—C19—O3	179.4 (5)
Ni1—N3—C4—N4	-171.08 (19)	C17—N8—C19—O3	-3.5 (7)
C5—N4—C4—N3	-0.5 (4)		
Symmetry codes: (i) $-x+1$, $-y$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N2—H2A····O3 ⁱⁱ	0.86	1.92	2.764 (5)	169	
N4—H4A····O2 ⁱⁱⁱ	0.86	1.85	2.703 (3)	170	
N6—H6A····O2 ^{iv}	0.86	1.97	2.772 (3)	155	
C7—H7···N1 ⁱ	0.93	2.57	3.076 (4)	115	
C8—H8···O1 ^v	0.93	2.59	3.264 (5)	130	
C3—H3…N3	0.93	2.57	3.053 (4)	113	
Symmetry codes: (ii) $-x+1$, $y-1/2$, $-z+1/2$; (iii) $-x+1$, $y+1/2$, $-z+1/2$; (iv) x , $-y+1/2$, $z-1/2$; (i) $-x+1$, $-y$, $-z$; (v) $-x$, $y+1/2$, $-z+1/2$.					

